organic compounds

3933 independent reflections 1657 reflections with $I > 2\sigma(I)$

 $0.25 \times 0.20 \times 0.15~\text{mm}$

3 standard reflections frequency: 120 min

intensity decay: 1%

H atoms treated by a mixture of

independent and constrained

 $R_{\rm int} = 0.032$

refinement

 $\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3a,4,10,10b-Tetrahydro-2*H*-furo[2,3-*a*]carbazol-5(3*H*)-one

Nagihan Çaylak,^a Tuncer Hökelek,^b* Nesimi Uludağ^c and Süleyman Patır^d

^aSakarya University, Faculty of Arts and Science, Department of Physics, 54187 Esentepe, Adapazarı, Turkey, ^bHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey, ^cCumhuriyet University, Department of Science, Faculty of Education, 58140, Sivas, Turkey, and ^dHacettepe University, Department of Science, Faculty of Education, 06800 Beytepe, Ankara, Turkey Correspondence e-mail: merzifon@hacettepe.edu.tr

Received 22 August 2007; accepted 23 August 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.059; wR factor = 0.169; data-to-parameter ratio = 9.6.

The asymmetric unit of the title compound, $C_{14}H_{13}NO_2$, contains two independent molecules. In the indole ring system, the benzene and pyrrole rings are nearly coplanar, the dihedral angles being 0.48 (17) and 1.26 (17)°. The cyclohexenone and tetrahydrofuran rings have envelope conformations. In the crystal structure, intermolecular N-H···O hydrogen bonds link the molecules into supramolecular chains nearly parallel to the *c* axis.

Related literature

For general background, see: Phillipson & Zenk (1980); Saxton (1983); Abraham (1975). For related structures, see: Hökelek *et al.* (1994, 1998, 1999, 2004, 2006); Patır *et al.* (1997); Hökelek & Patir (1999); Hökelek & Patır (2002). For bondlength data, see: Allen *et al.* (1987).

Experimental

Crystal data

 $\begin{array}{l} C_{14}H_{13}NO_2\\ M_r = 227.26\\ Triclinic, P\overline{1}\\ a = 9.5970 \ (2) \ \text{\AA}\\ b = 10.0316 \ (3) \ \text{\AA}\\ c = 12.4952 \ (3) \ \text{\AA} \end{array}$

 $\alpha = 98.498 (15)^{\circ}$ $\beta = 107.499 (18)^{\circ}$ $\gamma = 96.362 (19)^{\circ}$ $V = 1119.21 (16) \text{ Å}^{3}$ Z = 4Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 298 (2) K

Data collection

Enraf–Nonius TurboCAD-4
diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.961, \ T_{\max} = 0.985$
4127 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.169$ S = 0.963933 reflections 411 parameters

Table 1

Selected torsion angles (°).

C10B-O1-C2-C3	8.7 (6)	C10'-O1'-C2'-C3'	0.3 (7)
C2-O1-C10B-C3A	-27.2(5)	C2'-O1'-C10'-C3A'	-22.3(6)
C3A-C3-C2-O1	12.9 (7)	C3A' - C3' - C2' - O1'	21.5 (7)
C10B-C3A-C3-C2	-28.0(6)	C10' - C3A' - C4' - C5'	-39.9(8)
C10B-C3A-C4-C5	-42.7 (6)	C10' - C3A' - C3' - C2'	-33.5 (6)
C5A-C5-C4-C3A	24.1 (6)	C3' - C3A' - C10' - O1'	34.5 (4)
C10A-C5A-C5-C4	-4.1(6)	C4'-C3A'-C10'-C10	40.4 (6)
C5-C5A-C10A-C10B	2.8 (6)	C5A' - C5' - C4' - C3A'	17.8 (8)
C5A - C10A - C10B - C3A	-20.4(6)	C10-C5A'-C5'-C4'	0.6 (7)
C10A-C10B-C3A-C4	38.6 (6)	C5'-C5A'-C10-N10'	-178.1(4)
O1-C10B-C3A-C3	33.8 (5)	C5A' - C10 - C10' - C3A'	-24.1 (6)

Table 2

Hydrogen-bond geometry (Å, °).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
0.96 (5) 0.83 (5)	1.98 (6) 2.01 (5)	2.876 (6) 2.829 (5)	155 (4) 169 (4)
	<i>D</i> -H 0.96 (5) 0.83 (5)	$\begin{array}{ccc} D-H & H\cdots A \\ \hline 0.96 \ (5) & 1.98 \ (6) \\ 0.83 \ (5) & 2.01 \ (5) \end{array}$	$D-H$ $H\cdots A$ $D\cdots A$ 0.96 (5) 1.98 (6) 2.876 (6) 0.83 (5) 2.01 (5) 2.829 (5)

Symmetry codes: (i) x, y - 1, z - 1; (ii) -x + 1, -y + 1, -z + 2.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors are grateful to the Scientific and Technical Research Council of Turkey for financial support under grant DPT/TBAG1 in purchasing the CAD-4 diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2317).

References

- Abraham, D. J. (1975). *The Catharanthus Alkaloids*, edited by W. I. Taylor & N. R. Fransworth, chs. 7 and 8. New York: Marcel Decker.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Hökelek, T., Gündüz, H., Patir, S. & Uludaug, N. (1998). Acta Cryst. C54, 1297–1299.
- Hökelek, T. & Patir, S. (1999). Acta Cryst. C55, 675-677.
- Hökelek, T. & Patır, S. (2002). Acta Cryst. E58, 0374-0376.
- Hökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). Acta Cryst. C50, 450-453.
- Hökelek, T., Patir, S. & Uludauğ, N. (1999). Acta Cryst. C55, 114-116.
- Hökelek, T., Uludağ, N. & Patır, S. (2004). Acta Cryst. E60, 025-027.
- Hökelek, T., Uludağ, N. & Patır, S. (2006). Acta Cryst. E62, 0791-0793.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Patır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem. 34, 1239–1242.
- Phillipson, J. D. & Zenk, M. H. (1980). *Indole and Biogenetically Related Alkaloids*, ch 3. New York: Academic Press.
- Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, chs. 8 and 11. New York: Wiley.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o3913-o3914 [doi:10.1107/S1600536807041608]

3a,4,10,10b-Tetrahydro-2H-furo[2,3-a]carbazol-5(3H)-one

N. Çaylak, T. Hökelek, N. Uludag and S. Patir

Comment

Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Phillipson & Zenk, 1980; Saxton, 1983; Abraham, 1975). The structures of tricyclic, tetracyclic and pentacyclic ring systems with dithiolane and other substituents of the tetrahydrocarbazole core, have been the subject of much interest in our laboratory. These include 1,2,3,4-tetrahydrocarbazole-1-spiro-2'-[1,3]dithiolane, (II) (Hökelek *et al.*, 1994), *N*-(2-methoxyethyl)-*N*-{2,3,4,9-tetrahydrospiro[1*H*-carbazole-1, 2-(1,3)dithiolane]-4-yl}benzene-sulfonamide, (III) (Patur *et al.*, 1997), spiro[carbazole-1,2'-[1,3]-dithiolan]-4(3*H*)-one, (IV) (Hökelek *et al.*, 1998), 9-acetonyl-3-ethylidene-1,2,3,4-tetrahydrospiro[carbazole-1,2'-[1,3] dithiolan]-4-one, (V) (Hökelek *et al.*, 1999), *N*-(2,2-dimethoxyethyl)-N -{9-methoxymethyl-1,2,3,4-tetrahydrospiro[carbazole-1,2'-[1,3] dithiolan]-4-one, (V) (Hökelek *& Patir*, 1999); also the pentacyclic compounds 6-ethyl-4-(2-methoxyethyl)-2,6-methano-5-oxo-hexahydropyrrolo- (2,3 - d)carbazole-1-spiro-2'-(1,3) dithiolane, (VII) (Hökelek & Patir, 2002), *N*-(2-benzyloxyethyl)-4,7-dimethyl-6-(1,3-dithiolan-2-yl)-1,2,3,4, 5,6-hexahydro-1,5-meth

The asymmetric unit of the title compound, (I), contains two independent molecules (Fig. 1). It consists of a carbazole skeleton with furan ring, in which the bond lengths and angles are within normal ranges (Allen *et al.*, 1987). The bonds N10—C9A [1.388 (5) Å], N10—C10A [1.357 (5) Å], N10'-C9A' [1.378 (5) Å] and N10'-C10 [1.362 (5) Å] generally agree with those in compounds (II)-(IX). In all structures atom N10 is substituted. The absolute configurations of C3a and C10*b* are *R* and *R*, respectively.

An examination of the deviations from the least-squares planes through individual rings shows that rings A (C5b/C6—C9/C9a), B (C5a/C5b/C9a/N10/C10a) and A' (C5b'/C6'-C9'/C9a'), B' (C5a'/C5b'/C9a'/N10'/C10) are planar. They are also nearly coplanar with dihedral angles of A/B = $0.48 (17)^{\circ}$ and A'/B' = $1.26 (17)^{\circ}$. Rings C (C3a/C4/C5/C5a/C10a/C10b), D (O1/C2/C3/C3a/C10b) and C' (C3a'/C4'/C5'/C5a'/C10/C10'), D' (O1'/C2'/C3'/C3a'/C10') have envelope conformations with atoms C3a and C3a' displaced by -0.472 (5) Å (for ring C), 0.533 (5) Å (for ring D) and -0.491 (5) Å (for ring C'), -0.551 (5) Å (for ring D') from the planes of the other ring atoms, respectively. Rings C and C' have pseudo mirror planes running through atoms C3a and C5a (for ring C) and C3a' and C5a' (for ring C'), while rings D and D' have pseudo twofold axis and pseudo mirror plane, respectively, running through atom C2 and midpoint of C3a—C10b bond (for ring D) and atom C3a' and midpoint of O1'-C2'bond (for ring D'), as can be deduced from the torsion angles (Table 1).

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 2) link the molecules into chains nearly parallel to *c* axis (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, (I), a solution of 2,3-dichloro -5,6-dicyano-*p*-benzoquine (4.25 g, 18.75 mmol) in tetrahydrofuran (30 ml) was added dropwise to an ice cold solution of (3aS,10bR)-3,3a,4,5,10,10*b* -hexahydro-2*H*-furo[2,3-*a*]carbazole (2.00 g, 9.37 mmol) in tetrahydrofuran -water (90:10, 50 ml). The mixture was stirred in an ice bath for 4 h, and then over night. The mixture was poured into sodium hydroxide (100 ml, 10%) and extracted with dichloromethane (25 ml). The organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was crystallized from ethyl acetate (yield; 1.56 g, 73%).

Refinement

H atoms were located in difference syntheses and refined isotropically [N—H = 0.83 (4) and 0.96 (5) Å, $U_{iso}(H) = 0.088 (17)$ and 0.062 (16) Å²; C—H = 0.88 (4)–1.10 (6) Å, $U_{iso}(H) = 0.038 (12)–0.16 (3) Å²].$

Figures

Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. The hydrogen atoms are omitted for clarity.

Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted [symmetry code: (ii) 1 - x, 1 - y, 2 - z].

(3aR,10bR)-3a,4,10,10b-Tetrahydro-2H-furo[2,3-a]carbazol-5(3H)-one

Z = 4
$F_{000} = 480$
$D_{\rm x} = 1.349 {\rm Mg m}^{-3}$
Melting point: 484 K
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 25 reflections
$\theta = 3.5 - 15.8^{\circ}$
$\mu = 0.09 \text{ mm}^{-1}$
T = 298 (2) K
Block, colorless
$0.25\times0.20\times0.15~mm$

Data collection

Enraf-Nonius TurboCAD-4 diffractometer	$R_{\rm int} = 0.032$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.1^{\circ}$
Monochromator: graphite	$\theta_{\min} = 3.2^{\circ}$
T = 298(2) K	$h = -11 \rightarrow 10$
non-profiled ω scans	$k = -11 \rightarrow 11$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = 0 \rightarrow 14$
$T_{\min} = 0.961, T_{\max} = 0.985$	3 standard reflections
4127 measured reflections	every 120 min
3933 independent reflections	intensity decay: 1%
1657 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.059$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.169$	$w = 1/[\sigma^2(F_o^2) + (0.0695P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.96	$(\Delta/\sigma)_{\rm max} < 0.001$
3933 reflections	$\Delta \rho_{max} = 0.21 \text{ e} \text{ Å}^{-3}$
411 parameters	$\Delta \rho_{\rm min} = -0.22 \ e \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
O1	0.3614 (4)	0.0625 (3)	0.8096 (2)	0.0575 (9)
O2	0.4088 (4)	0.4281 (4)	1.1854 (3)	0.0780 (11)

N10	0.6324 (4)	0.2534 (4)	0.9325 (3)	0.0453 (10)
H10	0.654 (5)	0.195 (5)	0.874 (4)	0.088 (17)*
C2	0.3106 (7)	-0.0309 (5)	0.8735 (5)	0.0624 (15)
H21	0.392 (6)	-0.087 (5)	0.903 (4)	0.097 (19)*
H22	0.245 (7)	-0.121 (6)	0.816 (5)	0.13 (2)*
C3	0.2490 (8)	0.0502 (6)	0.9539 (5)	0.0661 (16)
H31	0.325 (7)	0.061 (6)	1.033 (6)	0.13 (3)*
H32	0.150 (5)	0.010 (5)	0.952 (4)	0.077 (17)*
C3A	0.2338 (6)	0.1863 (5)	0.9132 (4)	0.0535 (13)
H3A	0.131 (5)	0.171 (4)	0.849 (4)	0.062 (14)*
C4	0.2435 (6)	0.3072 (6)	1.0061 (4)	0.0557 (14)
H41	0.213 (6)	0.398 (6)	0.971 (4)	0.108 (19)*
H42	0.178 (5)	0.286 (5)	1.042 (4)	0.065 (15)*
C5	0.3954 (5)	0.3658 (5)	1.0900 (4)	0.0483 (12)
C5A	0.5185 (5)	0.3427 (4)	1.0513 (3)	0.0393 (11)
C5B	0.6747 (5)	0.3850 (4)	1.1055 (4)	0.0424 (11)
C6	0.7658 (6)	0.4656 (5)	1.2100 (4)	0.0508 (13)
H6	0.720 (4)	0.503 (4)	1.259 (3)	0.038 (12)*
C7	0.9151 (7)	0.4841 (6)	1.2311 (5)	0.0622 (15)
H7	0.973 (5)	0.542 (4)	1.295 (4)	0.053 (14)*
C8	0.9794 (7)	0.4263 (5)	1.1547 (5)	0.0628 (15)
H8	1.086 (6)	0.443 (5)	1.167 (4)	0.093 (19)*
C9	0 8942 (5)	0.3469(5)	1 0509 (4)	0.0524 (13)
H9	0.0910(5)	0.302(5)	0 997 (4)	0.087 (17)*
C9A	0.7427(5)	0.3281(4)	1.0291(3)	0.0409(11)
C10A	0.7127(5) 0.4989(5)	0.2641 (4)	0.9463 (3)	0.0383(11)
C10B	0.3547(5)	0.1990 (5)	0.8586(4)	0.0303(11) 0.0441(12)
H10B	0.328 (6)	0.255 (5)	0.803 (4)	0.096(19)*
01'	0.520(0) 0.8017(4)	0.233(3)	1 4224 (2)	0.0590 (15)
02'	0.0017(1) 0.7739(4)	1,0773(4)	1.1221(2) 1.8104(3)	0.0793(12)
N10'	0.7739(4) 0.6708(4)	1.0775(4) 1.0219(4)	1.0104(3)	0.0775(12)
H10'	0.6768(4)	0.988(4)	1.4240(3) 1.358(4)	0.0433(10) 0.062(16)*
C2'	0.000(3)	0.7825(9)	1.558(4)	0.002(10)
U2 H21'	1.001(8)	0.7823(3)	1.4631 (5)	0.0709(19) 0.16(3)*
H21	1.001(8)	0.647 (7)	1.452 (0)	$0.10(3)^{*}$ 0.11(2)*
1122 C2!	0.975(0)	0.081(0)	1.407 (3)	$0.11(2)^{\circ}$
U21'	1.015(5)	0.8239(0)	1.0003(4)	0.0374(14) 0.097(19)*
1122	1.013(3)	0.920(3)	1.031(4)	$0.067(10)^{\circ}$
	1.033(3)	0.771(4)	1.033(4)	$0.003(14)^{\circ}$
	0.8212(3)	0.7840(3)	1.0150(4)	0.0477(12)
	0.807 (3)	0.082(3)	1.013 (4)	$0.070(13)^{\circ}$
	0.7920 (8)	0.8567 (6)	1.7204 (5)	0.0607 (15)
H41 [°]	0.705 (6)	0.813 (5)	1./1/(4)	0.08 (2)*
H42	0.873(0)	0.848 (5)	1.793 (5)	0.090 (18)*
C5 A1	0.7015(5)	1.0012(3)	1./200 (4)	0.0521(13)
CSPI	0./19/(4)	1.045/(4)	1.0119(3)	0.0399 (11)
C2R.	0.0913(4)	1.1/38 (4)	1.3828 (3)	0.0410(11)
	0.0891 (3)	1.3000 (5)	1.0424 (4)	0.0408 (12)
H0 [°]	0.707 (4)	1.323 (4)	1./1/(4)	0.052 (14)*
U/	0.6394 (5)	1.4060 (5)	1.3832 (4)	0.0524 (13)

Ц7 '	0.651(4)	1 408 (4)	1.610(3)	0.048 (12)*
Π/	0.031 (4)	1.496 (4)	1.019(5)	0.046 (12)
C8'	0.6326 (6)	1.3864 (5)	1.4668 (5)	0.0591 (14)
H8'	0.608 (4)	1.467 (4)	1.423 (3)	0.060 (13)*
C9'	0.6346 (5)	1.2632 (5)	1.4058 (4)	0.0520 (13)
H9'	0.615 (4)	1.246 (4)	1.329 (3)	0.042 (12)*
C9A'	0.6622 (4)	1.1557 (4)	1.4631 (3)	0.0401 (11)
C10	0.7070 (4)	0.9548 (4)	1.5132 (4)	0.0409 (11)
C10'	0.7247 (5)	0.8092 (5)	1.5011 (4)	0.0452 (12)
H10A	0.624 (5)	0.758 (4)	1.476 (3)	0.052 (13)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.079 (2)	0.050 (2)	0.0440 (19)	0.0092 (17)	0.0228 (17)	0.0041 (16)
O2	0.081 (3)	0.104 (3)	0.051 (2)	0.019 (2)	0.037 (2)	-0.014 (2)
N10	0.055 (3)	0.046 (2)	0.040 (2)	0.012 (2)	0.024 (2)	0.0056 (19)
C2	0.082 (4)	0.047 (3)	0.057 (3)	0.005 (3)	0.017 (3)	0.019 (3)
C3	0.072 (4)	0.063 (4)	0.069 (4)	0.001 (3)	0.032 (4)	0.020 (3)
C3A	0.052 (3)	0.061 (3)	0.050 (3)	0.011 (3)	0.017 (3)	0.017 (3)
C4	0.058 (4)	0.068 (4)	0.054 (3)	0.019 (3)	0.031 (3)	0.020 (3)
C5	0.061 (4)	0.054 (3)	0.042 (3)	0.023 (3)	0.027 (3)	0.013 (2)
C5A	0.054 (3)	0.038 (3)	0.033 (2)	0.014 (2)	0.023 (2)	0.007 (2)
C5B	0.055 (3)	0.040 (3)	0.040 (3)	0.016 (2)	0.024 (2)	0.010 (2)
C6	0.065 (4)	0.054 (3)	0.041 (3)	0.013 (3)	0.026 (3)	0.008 (2)
C7	0.066 (4)	0.064 (4)	0.046 (3)	0.008 (3)	0.011 (3)	-0.006 (3)
C8	0.055 (4)	0.067 (4)	0.066 (4)	0.013 (3)	0.020 (3)	0.006 (3)
C9	0.053 (4)	0.056 (3)	0.054 (3)	0.018 (3)	0.024 (3)	0.006 (3)
C9A	0.048 (3)	0.040 (3)	0.038 (3)	0.009 (2)	0.020 (2)	0.005 (2)
C10A	0.047 (3)	0.040 (3)	0.036 (3)	0.011 (2)	0.020 (2)	0.013 (2)
C10B	0.060 (3)	0.036 (3)	0.039 (3)	0.010 (2)	0.019 (3)	0.008 (2)
01'	0.070 (3)	0.065 (2)	0.0415 (19)	0.0224 (18)	0.0193 (18)	-0.0018 (16)
O2'	0.134 (3)	0.083 (3)	0.045 (2)	0.050 (2)	0.049 (2)	0.0171 (19)
N10'	0.054 (3)	0.048 (3)	0.034 (2)	0.0126 (19)	0.016 (2)	0.004 (2)
C2'	0.067 (5)	0.110 (6)	0.055 (4)	0.028 (4)	0.024 (3)	0.004 (4)
C3'	0.052 (4)	0.059 (4)	0.060 (3)	0.017 (3)	0.017 (3)	0.003 (3)
C3A'	0.064 (4)	0.039 (3)	0.045 (3)	0.011 (2)	0.022 (2)	0.011 (2)
C4'	0.087 (5)	0.061 (4)	0.049 (3)	0.024 (4)	0.035 (3)	0.022 (3)
C5'	0.067 (3)	0.054 (3)	0.049 (3)	0.019 (3)	0.034 (3)	0.016 (3)
C5A'	0.049 (3)	0.038 (3)	0.035 (3)	0.005 (2)	0.019 (2)	0.003 (2)
C5B'	0.041 (3)	0.045 (3)	0.038 (3)	0.006 (2)	0.016 (2)	0.003 (2)
C6'	0.055 (3)	0.043 (3)	0.046 (3)	0.008 (2)	0.024 (3)	0.003 (3)
C7'	0.058 (3)	0.036 (3)	0.068 (4)	0.007 (2)	0.028 (3)	0.007 (3)
C8'	0.068 (4)	0.054 (4)	0.069 (4)	0.019 (3)	0.035 (3)	0.020 (3)
C9'	0.059 (3)	0.062 (4)	0.042 (3)	0.017 (3)	0.021 (3)	0.016 (3)
C9A'	0.044 (3)	0.045 (3)	0.036 (3)	0.012 (2)	0.018 (2)	0.008 (2)
C10	0.037 (3)	0.044 (3)	0.043 (3)	0.006 (2)	0.015 (2)	0.007 (2)
C10'	0.045 (3)	0.046 (3)	0.046 (3)	0.006 (3)	0.022 (3)	0.001 (2)

Geometric parameters (Å, °)

O1—C2	1.451 (5)	O1'—C2'	1.434 (6)
O1—C10B	1.432 (5)	O1'—C10'	1.424 (5)
O2—C5	1.225 (5)	O2'—C5'	1.232 (5)
N10—C9A	1.388 (5)	N10'—C9A'	1.378 (5)
N10-C10A	1.357 (5)	N10'—C10	1.362 (5)
N10—H10	0.96 (5)	N10'—H10'	0.83 (4)
C2—H21	1.03 (5)	C2'—H21'	0.93 (7)
С2—Н22	1.07 (6)	C2'—H22'	1.05 (6)
C3—C2	1.498 (7)	C3'—C2'	1.507 (7)
С3—Н31	1.02 (6)	C3'—H31'	1.02 (5)
С3—Н32	0.98 (5)	C3'—H32'	1.04 (4)
C3A—C3	1.532 (7)	C3A'—C3'	1.524 (6)
СЗА—НЗА	1.05 (4)	C3A'—C4'	1.526 (6)
C3A—C4	1.524 (7)	C3A'—C10'	1.520 (6)
C4—H41	1.10 (6)	СЗА'—НЗА'	1.02 (5)
C4—H42	0.90 (4)	C4'—H41'	0.88 (5)
C5—C4	1.510(7)	C4'—H42'	1.03 (5)
C5A—C5	1.433 (5)	C5'—C4'	1.510(7)
C5A—C5B	1.432 (6)	C5A'—C5'	1.432 (6)
C5A—C10A	1.375 (5)	C5A'—C10	1.375 (5)
C5B—C6	1.403 (6)	C5B'—C5A'	1.439 (6)
C6—C7	1.362 (7)	C5B'—C6'	1.376 (6)
С6—Н6	0.91 (4)	C5B'—C9A'	1.416 (5)
С7—С8	1.378 (7)	С6'—Н6'	0.88 (4)
С7—Н7	0.90 (4)	C7'—C6'	1.376 (6)
С8—Н8	0.98 (5)	C7'—C8'	1.403 (6)
С9—С8	1.377 (6)	C7'—H7'	0.98 (4)
С9—Н9	0.99 (5)	C8'—H8'	1.05 (4)
С9А—С5В	1.399 (5)	C9A'—C9'	1.387 (6)
C9A—C9	1.382 (6)	C9'—C8'	1.358 (6)
C10A—C10B	1.490 (6)	С9'—Н9'	0.90 (4)
C10B—C3A	1.515 (6)	C10—C10'	1.481 (6)
C10B—H10B	0.95 (5)	C10'—H10A	0.98 (4)
C10B—O1—C2	108.7 (3)	C9A'—N10'—H10'	126 (3)
C10A—N10—C9A	108.6 (3)	O1'—C2'—C3'	106.8 (4)
C10A—N10—H10	129 (3)	O1'—C2'—H22'	103 (3)
C9A—N10—H10	122 (3)	C3'—C2'—H22'	109 (3)
O1—C2—C3	107.2 (4)	O1'—C2'—H21'	103 (5)
O1—C2—H21	109 (3)	C3'—C2'—H21'	115 (5)
C3—C2—H21	121 (3)	H22'—C2'—H21'	118 (6)
O1—C2—H22	109 (3)	C2'—C3'—C3A'	103.6 (5)
С3—С2—Н22	120 (3)	C2'—C3'—H32'	110 (2)
H21—C2—H22	89 (4)	C3A'—C3'—H32'	112 (2)
C2—C3—C3A	105.1 (4)	C2'—C3'—H31'	108 (3)
С2—С3—Н32	115 (3)	C3A'—C3'—H31'	114 (3)
СЗА—СЗ—НЗ2	107 (3)	H32'—C3'—H31'	110 (4)

C2—C3—H31	106 (4)	C10'—C3A'—C3'	101.4 (4)
C3A—C3—H31	113 (4)	C10'—C3A'—C4'	115.4 (4)
H32—C3—H31	111 (4)	C3'—C3A'—C4'	115.6 (5)
C10B—C3A—C4	114.9 (4)	C10'—C3A'—H3A'	109 (3)
C10B—C3A—C3	101.8 (4)	C3'—C3A'—H3A'	107 (3)
C4—C3A—C3	114.8 (4)	C4'—C3A'—H3A'	108 (3)
C10B—C3A—H3A	109 (2)	C5'—C4'—C3A'	116.7 (4)
С4—С3А—НЗА	110 (2)	C5'—C4'—H42'	113 (3)
С3—С3А—НЗА	106 (2)	C3A'—C4'—H42'	110 (3)
C5—C4—C3A	116.7 (4)	C5'—C4'—H41'	102 (4)
C5—C4—H42	112 (3)	C3A'—C4'—H41'	104 (3)
C3A—C4—H42	109 (3)	H42'—C4'—H41'	111 (4)
C5—C4—H41	100 (3)	O2'—C5'—C5A'	122.7 (4)
C3A—C4—H41	113 (3)	O2'—C5'—C4'	120.0 (4)
H42—C4—H41	106 (4)	C5A'—C5'—C4'	117.2 (4)
O2—C5—C5A	123.5 (4)	C10—C5A'—C5'	120.6 (4)
O2—C5—C4	120.2 (4)	C10—C5A'—C5B'	108.1 (4)
C5A—C5—C4	116.3 (4)	C5'—C5A'—C5B'	131.2 (4)
C10A—C5A—C5B	106.9 (3)	C6'—C5B'—C9A'	119.1 (4)
C10A—C5A—C5	121.5 (4)	C6'—C5B'—C5A'	135.4 (4)
C5B—C5A—C5	131.5 (4)	C9A'—C5B'—C5A'	105.4 (3)
C9A—C5B—C6	118.0 (4)	C5B'—C6'—C7'	119.7 (5)
C9A—C5B—C5A	106.5 (4)	С5В'—С6'—Н6'	127 (3)
C6—C5B—C5A	135.5 (4)	С7'—С6'—Н6'	114 (3)
С7—С6—С5В	118.1 (5)	C6'—C7'—C8'	120.4 (5)
С7—С6—Н6	125 (2)	С6'—С7'—Н7'	126 (2)
С5В—С6—Н6	117 (2)	С8'—С7'—Н7'	113 (2)
C6—C7—C8	122.8 (5)	C9—C8—C7	121.1 (5)
С6—С7—Н7	118 (3)	С9—С8—Н8	115 (3)
С8—С7—Н7	119 (3)	С7—С8—Н8	124 (3)
C8—C9—C9A	116.4 (5)	C9'—C8'—C7'	121.2 (5)
С8—С9—Н9	121 (3)	С9'—С8'—Н8'	119 (2)
С9А—С9—Н9	122 (3)	С7'—С8'—Н8'	120 (2)
C9—C9A—N10	128.2 (4)	C8'—C9'—C9A'	118.5 (5)
С9—С9А—С5В	123.7 (4)	С8'—С9'—Н9'	124 (2)
N10-C9A-C5B	108.1 (4)	С9А'—С9'—Н9'	117 (2)
N10-C10A-C5A	109.9 (4)	N10'—C9A'—C9'	131.0 (4)
N10-C10A-C10B	123.7 (4)	N10'—C9A'—C5B'	107.8 (4)
C5A-C10A-C10B	126.4 (4)	C9'—C9A'—C5B'	121.1 (4)
O1-C10B-C10A	110.8 (4)	N10'-C10-C5A'	108.6 (4)
O1—C10B—C3A	105.8 (4)	N10'—C10—C10'	124.0 (4)
C10A—C10B—C3A	110.3 (4)	C5A'—C10—C10'	127.4 (4)
O1-C10B-H10B	113 (3)	O1'—C10'—C10	111.3 (4)
C10A—C10B—H10B	109 (3)	O1'—C10'—C3A'	105.5 (4)
C3A—C10B—H10B	107 (3)	C10—C10'—C3A'	109.1 (4)
C10'—O1'—C2'	109.8 (4)	O1'—C10'—H10A	112 (2)
C10—N10'—C9A'	110.0 (4)	C10—C10'—H10A	105 (2)
C10—N10'—H10'	123 (3)	C3A'—C10'—H10A	113 (2)
C10B—O1—C2—C3	8.7 (6)	C10'—O1'—C2'—C3'	0.3 (7)

C2-01-C10B-C10A	92.5 (4)		C2'		96.0 (5)
C2-O1-C10B-C3A	-27.2(5)		C2'		-22.3(6)
C10A—N10—C9A—C9	-179 1 (4)		C10—N10'—C9A'—C9'		177 3 (4)
C10A—N10—C9A—C5B	09(5)		C10—N10'—C9A'—C5E	3'	-13(5)
C9A—N10—C10A—C5A	-10(5)		C3A'-C3'-C2'-O1'	-	21.5 (7)
C9A—N10—C10A—C10B	178 8 (4)		C10'-C3A'-C4'-C5'		-399(8)
$C_{3A} - C_{3} - C_{2} - O_{1}$	12.9(7)		C3'-C3A'-C4'-C5'		78.2.(7)
C4-C3A-C3-C2	-152.8(5)		C10'-C3A'-C3'-C2'		-33.5(6)
C10B-C3A-C3-C2	-280(6)		C4'-C3A'-C3'-C2'		-1591(5)
C10B-C3A-C4-C5	-42.7(6)		C3'-C3A'-C10'-01'		34 5 (4)
C_{3} C_{3} C_{4} C_{5}	74 9 (6)		C4'-C3A'-C10'-01'		160 1 (4)
02 - C5 - C4 - C3A	-155 4 (4)		C3'-C3A'-C10'-C10		-853(4)
C_{5A} C_{5} C_{4} C_{3A}	241(6)		C4'-C3A'-C10'-C10		40.4 (6)
C10A - C5A - C5 - O2	1754(4)		02'-05'-04'-03A'		-161.7(5)
$C_{5B} = C_{5A} = C_{5} = O_{2}^{2}$	-21(7)		$C_{5A}' = C_{5}' = C_{4}' = C_{3A}'$		17.8 (8)
C_{10}^{-} C_{2}^{-} C_{2}^{-} C_{2}^{-} C_{4}^{-}	-41(6)		C_{10} C_{54} C_{7} C_{7} C_{7}		-1799(5)
C_{10}^{SR} C_{20}^{SR} C_{20}^{SR} C_{20}^{SR} C_{20}^{SR}	178 A (A)		C5B' = C5A' = C5' = O2'		(3)
$C_{10A} = C_{5A} = C_{5B} = C_{9A}$	-0.2(4)		$C_{3B} = C_{3A} = C_{3} = C_{2}$		0.6(7)
$C_{10A} - C_{3A} - C_{3B} - C_{3A}$	0.2(4)		C10-C3A-C3-C4		-176.2(5)
$C_{3} = C_{3} = C_{3$	177.0(4)		$C_{3}D = C_{3}A = C_{3} = C_{4}$		-178.1(4)
$C_{10A} - C_{2A} - C_{3B} - C_{0}$	-30(8)		C5P' C5A' C10 N10	n	-0.6(5)
C_{5}	-3.0(8)		C5B = C5A = C10 = N10	0	-0.0(3)
C_{5} C_{5} C_{10A} N_{10}	0.7(4)		C5 = C5A = C10 = C10	יר	3.3(7)
C_{5} C_{5} C_{10} C_{10} C_{10}	-1/7.3(4)		CSD = CSA = CI0 = CI0	J	-1/9.1(4)
C_{5} C_{5} C_{10A} C_{10B}	-1/9.1(4)		C0 = C3B = C3A = C10	0	-1/9.1(3) -0.2(5)
C_{3} C_{5} C_{6} C_{7}	2.0(0)		$C_{A} = C_{A} = C_{A} = C_{A}$	10	-0.2(3)
$C_{A} = C_{A} = C_{A$	170.2(5)		C0 - C3B - C3A - C3		-2.0(8)
CSA = CSB = C0 = C7	-1/9.5(3)		C9A - C5B - C5A - C3)	170.9(4)
$C_{3B} = C_{0} = C_{7} = C_{8}$	-0.3(8)		$C_{9A} = C_{3B} = C_{0} = C_{7}$		-0.2(7)
$C_{0}^{} C_{0}^{} C_{0}^{$	-0.5(7)		CSA = CSB = CO = C/	,	-180.0(4)
$C_{A} = C_{A} = C_{A}$	-0.3(7)		$C_0 = C_3 D = C_9 A = N_1 0$	101	-180.0(4)
C_{9} C_{9} C_{9} C_{9} C_{6}	0.1(0)		CSA = CSB = C9A = N	10	0.9 (4)
N10 - C9A - C5B - C6	-1/9.9(4)		$C_0 = C_{3D} = C_{9A} = C_9$	ינ	1.5 (0)
C9 - C9A - C5B - C5A	1/9.0 (4)		$C_{A} = C_{B} = C_{A} = C_{A}$)	-1//.9(4)
N10 - C9A - C9B - C5A	-0.4(4)		$C_{8} = C_{7} = C_{8} = C_{8}$		-0.5(7)
N10 - C9A - C9 - C8	-1/9.9(4)		C0 - C7 - C8 - C9		0.3(7)
C_{SB} C_{9A} C_{9} C_{8}	0.2 (7)		$C9A^{-}-C9^{-}-C8^{-}-C7^{-}$		0.7(7)
N10 - C10A - C10B - O1	42.9 (6)		N10 - C9A - C9 - C8		-180.0 (4)
CSA—CI0A—CI0B—OI	-13/.3(4)		$C_{3B} = C_{9A} = C_{9} = C_{8}$		-1.5 (7)
N10 - C10A - C10B - C3A	159.8 (4)		NI0-CI0-CI0-OF		41.6 (6)
CSA = CI0A = CI0B = C3A	-20.4 (6)		CSA-C10-C10-OF	,	-140.2 (4)
OI = CI0B = C3A = C4	158.5 (4)		N10-C10-C10-C3A	L'	157.7 (4)
C10A - C10B - C3A - C4	38.6 (6)		C5A' - C10 - C10' - C3A'	A'	-24.1 (6)
OI = CIOB = C3A = C3	33.8 (5)		C9A'-N10'-C10-C5A	, A	1.2 (5)
C10A—C10B—C3A—C3	-86.1 (5)		C9A'—N10'—C10—C10)'	179.7 (4)
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N10—H10…O2 ⁱ		0.96 (5)	1.98 (6)	2.876 (6)	155 (4)

N10'—H10'…O1 ⁱⁱ	0.83 (5)
Symmetry codes: (i) x, $y-1$, $z-1$: (ii) $-x+1$.	-v+1, -z+2.

2.01 (5) 2.829 (5) 169 (4)

Fig. 1

Fig. 2

